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The ISIS Project

This semi-annual status report covers activities of the ISIS project during the

second half of 1989. Because this is our second progress report under NASA

funding, we assume that the reader has some background regarding the goals
and status of our effort, and focus instead on technical accomplishments during

the report period and goals for the next six months. In addition to listing our
most recent publications, we also cite several more general publications at the

end of this report. Readers unfamiliar with our work should probably start by

reading our previous semi-annual report (January 1990) and perhaps some of

these cited papers.

Goals of the ISIS Effort During the Report Period

During the first six months of 1990, our project had several independent objec-
tives:

1. At the level of the ISIS Toolkit, we undertook to complete ISIS release

V2.0, containing our "bypass" communication protocols [1]. This effort

was successful, and V2.0 has been released with a preliminary implemen-

tation of the bypass protocols. Performance of the system is greatly en-

hanced by this change, but the initial software release is limited in some

respects. We are excited by this progress, and have now found several

additional ways to extend the protocol suite in the most common client-

server settings that arise under ISIS. We plan to make these changes to

our system during the coming six months. With these changes, the by-

pass mechanisms will have largely replaced all other protocol implemen-
tations in ISIS, and the system should be both more scalable and capable

of accommodating communication transport protocols based on hardware

(ethernet and FDDI) multicast. With respect to system releases, we are
close to a V2.1 release consisting of V2.0 with bug fixes, but are undecided

as to when these other extensions would be released to the public.

2. The Meta project focused on the definition of the Lomita programming

language during the report period. Lomita is a high level language for

specifying rules that monitor sensors for conditions of interest and trig-

gering appropriate reactions. This design has now been completed, and

implementation of Lomita is underway on the Meta 2.0 platform (this
defines a database interface to system instrumentation and is already op-

erational).

3. The Deceit file system effort completed a prototype, which is now oper-

ational at Cornell. Our current plans are to make Deceit available on a
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limited basis, primarily for use in two hospital information systems with

which we are collaborating.

A long-haul communication subsystem project was completed and can
now be used as part of ISIS. This effort resulted in tools for linking ISIS

systems on different LANs together over long-haul communications lines.

Several papers were completed during the report period and are described
below.

Visitor Robbert Van Renesse (a recent graduate of the Ameoba project

of Vrije University, Amsterdam) developed Magic Lantern, a graphical

tool for building application monitoring and control interfaces. Magic is

being included as part of our general ISIS releases. Van Renesse is now

spending six months at Bell Laboratories, but we are hoping that he will

subsequently return to our group on a permanent basis.

Goals of the ISIS Effort During the Remainder of 1990

Looking to the remaining six months of 1990, our project has identified the

following objectives:

1. ISIS Toolkit: This group sees a near-term need to implement the so-called

"pg_client" extensions to the bypass mode protocols and to complete the

implementation of our hierarchical process-group tools.

2. We have become interesting in developing a general purpose ISIS-based

system resource manager. Such a tool would schedule tasks onto machines

in a network setting, providing a low-level programmable interface that

could be specialized for a wide variety of uses. Tools of this sort are easily
built under ISIS and we see little difficulty in this undertaking, which

should be of substantial value within the ISIS user community.

3. We are starting work on the design of a new version of the ISIS sys-

tem, ISIS++, which would run under the Mach and Chorus kernels.

Goals would be increased transparency, the ability to support a realtime

toolkit, improved object-oriented interfaces, and the possibility of exploit-

ing shared memory and higher performance multicast facilities. The cur-
rent UNiX-based toolkit would still be supported on top of ISIS++.

4. We hope to achieve a working version of Lomita during this period.

5. We expect to see a working "production" version of Deceit completed

during this period and in use at some number of Beta-test sites.
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We hoping to complete papers on several topics: Experience with the ISIS

Toolkit, Part I: Issues of scope and scale (Birman and Cooper), Expe-

rience with the ISIS Toolkit, Part II: Programming with process groups

(Birman and Cooper), Theory of failure detection (Birman and Ricciardi),

Long-haul communication programming methodology (Birman, Makpan-

gou, Stephenson).

An effort to develop a distributed version of ML over ISIS has attracted

the interest of Robert Cooper, and we are actively involved in this effort.

Our hope is that it may yield insight into better programming tools for

use within the system.

Publications

Appendix A contains a copy of our papers on Distributed Application Man-

agement and on the BYPASS communications protocols. As noted above, a
substantial number of papers are now in the pipeline, including one on scaling

through the use of hierarchical mechanisms throughout ISIS, and another on

our experience programming with process groups. New topics arise constantly.

We expect to release a number of these in technical report form during the fall
of 1990.

The following papers give information on ISIS and META for readers unfamiliar
with our work. Reprints are available from Cornell. Our project has released a

much larger number of papers. E-mail reprint requests to "isis@cs.cornell.edu"

or contact the project administrative aide at 607-255-9198.

1. ISIS USERS MANUAL. Kenneth P. Birman, ed Cornell University De-

partment of Computer Science.

This programmers manual discusses the interface presented to ISIS users

who program in C, Lisp or Fortran. The current version of the manual
covers ISIS I/1.3; an eztensive revision version is planned for March 1990,

and will include discussion of architectural issues that arise in mapping

large applications to the ISIS system.

2. Kenneth P. Birman and Tommy Joseph. Chapters 13, 14 in: Distributed

Systems, Sape. J. Mullender, ed., Adison Wesley ACM Press Series, ISBN

41660, 1989.

This teztbook was compiled from the lecture notes used in Arctic 88 and

Fingerlakes 89, advanced courses in distributed computing. Two chapters

cover the ISIS approach in considerable detail and represent a good tech-
nical introduction to our work. The conclusions chapter may also be of

interest to readers; it ezplores the general question of robustness in dis-

tributed systems.





The following list identifies publications and papers that will be released in the

near future. All of these papers are intended for eventual publication in journals
or conferences.

1. Kenneth P. Birman, Andre Schiper, Pat Stephenson. "Fast Causal Mul-

ticast". April 1990. Available as Cornell University Department of Com-

puter Science Technical Report 90-1105.

A new scheme is presented for efficiently implementing a reliable, causally

ordered multicast primitive. Intended for use in the ISIS toolkit, it offers

a way to bypass the most costly aspects of ISIS while benefiting from vir-

tual synchrony. The facility scales with bounded overhead. Performance
is eztremely good over a range of reliability and delivery ordering prop-

erties; with these new protocols, an application pays for the properties it
needs. Moreover, users can plug in new protocols and benefit from them in

the contezt of the remainder of the ISIS runtime environment. Speedups

of more than an order of magnitude were obtained when the scheme was

implemented within Isis. One conclusion is that systems built using ISIS

can achieve performance competitive with the best ezisting multicast facil-

ities - a finding contradicting the widespread concern that fault-tolerance

may be unacceptably costly. All protocols described in the paper have been

implemented and instrumented, and the code is available in ISIS V$.O.

2. Ken Birman and Robert Cooper. "The ISIS Project: Real Experience a

Fault Tolerant Programming System". July 1990. Available as Cornell

University Department of Computer Science Technical Report 90-1138.

The ISIS Project has developed a distributed programming toolkit and a

collection of higher level applications based on these tools. ISIS is now in
use at more than 300 locations world-wide. Here, we discuss the lessons

(and surprises} gained from this ezperience with the real world.

3. Keith Marzullo. _MTP: An Atomic Multicast Transport Protocol". July

1990. Available as Cornell University Department of Computer Science

Technical Report 90-1141.

This paper describes MTP: a reliable transport protocol that utilizes the

multicast strategy of applicable lower layer network architectures. In addi-

tion to transporting data reliably and efficiently, MTP provides the client

synchronization necessary for agreement on the receipt of data and the

joining of the group of communicants.

4. Ken Birman and Aleta Ricciardi. "A Formalism for Fault-Tolerant Ap-

plications". July 1990. Available from Cornell University Department of

Computer Science.

Formal methods for specifying fault.tolerant requirements are eztremely

important for proving a given application correct and robust. Formal
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methods provide a clear and specific description and can lead to a bet-
ter understandin# of the problem. Moreover, a formalism enables one to

quantify problems and solutions and compare their strengths. By quanti-

fyin 9 both, minimal solutions can be fitted to problems. We believe modal
lo#ics, derived from the model of computation, provide an accessible and

useful means of speeifyin# and reasoning about fault-tolerant requirements
for asynchronous systems. We developed a tense-epistemic lo#ic based on a

model of computation whose basic semantic entities are the consistent cuts

of an asynchronous run. We use it to specify the safety and liveness prop-
erties of the Group Membership Problem in asynchronous systems that can

ezperience crash failures. Phrased in terms of knowledge, these conditions

quantify solutions in that there is a correspondence between message com-

plexity and the level of knowled#e attained. We use this correspondence to

derive two solutions to the Group Membership Problem.

Keith Marzullo, Robert Cooper, Mark Wood, Ken Birman. "Tools for

Distributed Application Management". June 1990. Available as Corneil

University Department of Computer Science Technical Report 90-1136.

It is common to construct software systems by interconnectin# non-distributed

components, using remote procedure calls and stream communication chan-

nels. This paper ezamines the problem of distributed application mana#e-

ment as it arises in systems havin# this structure. Our discussion is based

on the META system: a collection of utilities and tools for constructin#

distributed application mana#ement software. Built usin# the ISIS toolkit,

these include facilities for monitoring and scheduling activity in an un-

derlying system, for dynamically reconfiguring in response to failures or

load chan#es and for automatically restartin# failed system components.

A key facility is a sensor/actuator interface supporting a fault-tolerant

database of reaitime sensor values that can be intero#ated usin# a realtime

interval-lo#ic query langua#e. The set of sensors is completely eztensi-

ble and may include such values as machine load, temperature readin#s

from a thermometer, and even values of dynamically updated variables in

the memory space of a user-process. The META system is available from

Cornell University as part of its ISIS system distribution.

Messac Makpangou, Kenneth P. Birman, Pat Stephenson. "Designing
Partitioned Wide-Area Applications". Cornell University Department of

Computer Science Technical Report, delayed (Sept. 1990).

This technical report describes the new ISIS facilities for interconnectin#

systems runnin# on physically separated local area networks. The facility
assumes that links will normally be down and are open only periodically; it

spools communication automatically and transmits in bursts when the op-
portunity arises. By ezamining the needs of typical wide area applications

(schedulin# and a replicated directory) and ar#ument is made that these





facilitieswill beadequatefor solving a wide variety of wide-area problems.

The facility has been fully implemented and instrumented; it is included

as part of ISIS V#.O.

7. Kenneth P. Birman, Robert Cooper, Keith Marzullo. "ISIS and META

Projects: Progress Report". March 1990. Available as Cornell University

Department of Computer Science Technical Report 90-1103.

ISIS and META are two distributed systems projects at Cornell University.

The ISIS project, led by Ken Birman, has developed a new methodology,

virtual synchony, for writing robust distributed software.

8. Keith Marzulio and Mark Wood. "Making Real-Time Reactive Systems

Reliable". March 1990. Available from Cornell University Department of

Computer Science.

A reactive system is characterized by a control program that interacts with

an environment (or controlled program). The control program monitors
the environment and reacts to significant events by sending commands

to the environment. This structure is quite general. Not only are most

embedded real-time systems reactive systems, but so are monitoring and

debugging systems and distributed application management systems. Since

reactive systems are usually long-running and may control physical equip-

ment, fault-tolerance is vital. Our research tries to understand the princi-

pal issues of fault-tolerance in real-time reactive systems and to build tools

that allow a programmer to design reliable, real-time reactive systems.

9. Keith Marzullo, O. Babaoglu and Fred Schneider. "Priority Inversion and
Its Prevention". February 1990. Available as Cornell University Depart-

ment of Computer Science Technical Report 90-1088.

A priority inversion occurs when a low-priority task causes ezecution of

a higher.priority task to be delayed. The possibility of priority inversion
complicates the analysis of systems that use priority-based schedulers be-

cause priority inversions invalidate the assumption that a teask can be

delayed only by higher-priority tasks. This paper formalizes priority in-

version and gives sufficient conditions as well as some new protocols for

preventing priority inversions.
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83-552 ISIS: An Environment for Constructing Fault-Tolerant Distributed Systems. Bir-

man, Skeen, El Abbadi, Dietrich and Raeuchle. May 1983.

84-594 Implementing Fault-Tolerant Distributed Objects. Birman, Joseph, RaeucMe, and

El Abbadi. 4th Symposium on Reliability in Distributed Systems and Database Sys-

tems, Silver Springs, MD, October 1984. Available as reprint: IEEE Transactions

on Software Engineering, SE-il, 6, June 1985, Pgs. 502-508.

84-642 An Overview of the ISIS Project. Birman, E1 Abbadi, Dietrich, Joseph and
Raeuchle. October 1984. IEEE Distributed Processing Technical Committee

Newsletter. January 1985.

84-644 Low Cost Management of Replicated Data in Fault-Tolerant Distributed Systems.

Birman and Joseph. October 1984. Available as reprint: ACM Transactions on

Computer Systems, 4, 1, February 1986, Pgs. 54-70.

85-668 Replication and Fault-Tolerance in the ISIS System. Birman. March 1985 (Revised
September 1985). lOth A CM Symposium on Operating Systems Principles, Decem-

ber 1985, 79-86. Also appearing as: Operating Systems Review, 19, 5, December
1985.

85-694 Reliable Communication in the Presence of Failures. Birman and Joseph. July 1985.

(Revised August 1986). Available as reprint: ACM Transactions on Computer

Systems, 5, 1, February 1987, Pgs. 47-76.

85-712

86-744

Low Cost Management of Replicated Data. Joseph. (Ph.D. Thesis). November
1985.

ISIS: A System for Fault-Tolerance in Distributed Systems. Birman. April 1986.

86-753

86-772

Communication Support for Reliable Distributed Computing. Birman and Joseph.

May 1986. Proc. Asilomar Workshop on Fault Tolerant Distributed Computing,
March 1986.

Programming with Shared Bulletin Boards in Asynchronous Distributed Systems.

Birman, Joseph and Stephenson. August 1986. (Revised December 1986).

86-781 Efficient Concurrency Control for Libraries of Typed Objects. Raeuchle. (Ph.D.

Thesis). September 1986.

87-811 Exploiting Virtual Synchrony in Distributed Systems. Birman and Joseph. Febru-

ary 1987. Ilth A CM Symposium on Operating Systems Principles, December 1987.

Also appearing as: Operating Systems Review, 22, 1, December 1987, 123-38.
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87-849 ISIS - A Distributed Programming Environment, Version 1.3 - User's Guide and

Reference Manual, Birman, Joseph and Schmuck. July 1987.
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88-928 The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems.

Schmuck. (Ph.D. Thesis). August 1988.
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89-996 Concurrency Control for Transactions with Priorities. Marzullo. May 1989.
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The ISIS Distributed Programming Toolkit and The Meta Distributed Operating

System. Birman and Marzullo. SUN Technology, 2, 1 (Summer 1989).
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89-1014 An Advanced Course on Distributed Systems Lecture notes from Attic '88, an ad-
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Supporting Large Scale Applications on Networks of Workstations, Cooper and

Birman, April 1989.

89-1042 Deceit: A Flexible Distributed File System. Siegel, Birman and Marzullo. Novem-

ber 1989.

89-1067 Log-Based Recovery in Asynchronous Distributed Systems. Kenneth Kane. De-
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Budget

Abudgetarysummaryfor the report period has been submitted directly to Maj.
Boesch using the DARPA electronic reporting format, with a copy to Jerry Yan

at NASA Ames. Expenditures are in line with projections under our current

operating budget.
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Abstract

A new protocol is presented that efficientlyimplements a reliable,causally or-

dered multicast primitiveand iseasilyextended intoa totallyordered one. Intended

for use in the Islstoolkit,itoffersa way to bypassthe most costlyaspects of Isls

while benefitingfrom virtualsynchrony. The facilityscaleswith bounded overhead.

Measured speedups of more than an order ofmagnitude were obtained when the pro-

tocol was implemented within Isls.One conclusion isthat systems such as Islscan

achieveperformance competitive with the best existingmulticastfacilities-a finding

contradictingthe widespread concern that fault-tolerancemay be unacceptably costly.

Keywords and phrases: Distributedcomputing, faiJlt-tolerance,processgroups,

reliablemulticast,ABCAST, CBCAST, Isls.
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1 introduction

The Isis Toolkit [BLESS8] provides a variety of tools for building software in loosely

coupled distributed environments. The system has been successful in addressing problems

of distributed consistency, cooperative distributed algorithms, and fault-tolerance. At the

time of this writing, ISIS was in use at more than 250 locations worldwide.

Two aspects of Isis are key to its overall approach:

sZ/nc/zrono_ process groups.• An implementation of v/rt'._ly *

• A collection of atomic multicast protocols with which processes and group members

interact with groups.

Although Isis supports a wide range of mnlticast protocols, a protocol called CBCAST

accounts for the majority of communication in the system; in fact, many of the Isis tools

are little more than invocations of this communication primitive. For example, the Isls

replicated data tool uses a single (asynchronous) CBCAST to perform each update and

locking operation; reads require no communication at all. A consequence is that the cost
of CBCAST represents the dominant performance bottleneck in the Isis system.

The initial Isis CBCAST protocol was costly in part for structural reasons, and in part

because of the protocol used. The implementation was within a protocol server, hence all

CBCAST communication was via an indirect path. Independent of the cost of the proto-

col itself_ this indirection was tremendously expensive. With respect to the protocol used,

our initialimplementation favored _eneralityover_s_p_ecialization,permitt'mg e__tremely

_qexibledestinationaddressing,and using a piggybacking mechanism that achieved a de-

siredordering property but requireda garbage collectionmechanism. On the other hand,

thisstructureseemed to be the only one capable of supporting a powerful,generalset of

programming toolslikethe ones in our toolkit:simpler protocolsoften simply overlook

criticalforms of functiona_ty,which may exIMain why so few have entered widespread

use. Particularlyvaluable to us has been the abilityto to support multiple,possibly

overlapping processgroups, and virtualsyncltrony[BJKS88].

The protocolwe presenthereisbased on a causalorderingprotocoloriginallydeveloped by

$chiper [SES89]. u_e 0urprevious wor k,itass_es apr_ting virtually synchronous

programming environment likethe one that Islsprovides,although using few of itsfea-

tures.FUrther,itsupports a relativelyrestrictedform of multicastaddressing.Were our

work done outsideof the context of Isis,thiswould seriouslylimititsgenerality.In our

implementation, however, messages that do not conform to theserestrictionsare simply

routed via the old,more costlyalgorithm. A highlyoptimized multicastprotocol results

that /_sa.saesthe old Iszssystem and imposes very littleoverhead beyond that of the

message transportlayer.The majority of Islscommunication satisfiesthe requirements

of the bypass protocolsand hence benefitsfrom our work.

Our protocol uses a timestamping scheme, and in thisrespectresembles prior work by

2
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Ladkin [LL86]and Peterson [PBS89]. However, our resultsare substantiallymore general.

The most important differencesare these:

• Peterson's Psync-based protocol can be used only in systems composed of a single

process group, ours supports multiple, possibly overlapping process groups.

• Both Peterson's and Ladkin's protocols have overhead linear in the number of pro-

cesses that ever participated in the application, which could be large; our overhead
is bounded and small.

Like Peterson's and Ladkin's protocols, our basic protocol provides for message delivery

ordering that respects causality in the sender (CBCAST), but is readily extended into a

more costly protocol that provides a total delivery ordering even for concurrent invocations

(ABCAST).

The bypass protocol suite lets users select the multicast properties desired for an appli-

cation. Choices include a "raw" delivery service achieving extremely high performance

but with minimal reliabilityguarantees,multicastwith atomicityand FIFO delivery,and

causalor totalordering.This approach permits the.user to pay forjustthose reliability

and ordering propertiesneeded by the application.

The paper isstructuredas follows.Section2 reviewsthe multicastingproblem and defines

our terminology. Sections3 and 4 introduceour new technique. Section 5 discussions

extensionsof the CBCAST protocol,includingthe bypass ABCAST protocol. The

costsof our variousprimitivesare measured in Section6.

2 Execution model

2.1 Basic system model

The system is composed of processesP = {PI,P2,...,P,}with disjointmemory spaces.

Initially,we assume that thisset is staticand known in advance; laterwe relax this

assumption. Processesfailby crashingdetectably(a?aiLstopassumption);notificationis

provided by Islsin a manner describedbelow. In many situations,processeswillneed

to cooperate. For thispurpose, they form process_ro_ps. Each such group has a name

and a set of member processes;members join and leave dynamically;a failurecauses a

departure Irom allgroups to which a processbelongs. The members of a processgroup

need not be identical,nor isthereany limiton the number of groups to which a process

may belong. The set of groups isdenoted by G = {gI,#2...}.In typicalsettings,the

number of groups willbe largeand processeswillbelong to severalgroups.

Our system model isunusual in assuming an externalservicethat implements the pro-

cessgroup abstraction.The interfacefrom a processto thisservicewillnot concern us

here,but the manner in which the servicecommunicates to a processishighlyrelevant.



A _ew of a process group is a listof itsmembers. A _ew seq_er.ce for g is a list

_e_oo(g), _e_l (g), ..., _e_n(g), where

i.t ewo(g)= O.

2. Vi : t_ai(g)C_P, where P is the set of M1 processes in the system.

3. s/e_i(g) and v/ewi+x(g) differ by the addition or subtraction of exactly one process.

We assume thatsome sortofprocessgroup servicecomputes new views and communicates

them to the members of the groups involved.Processeslearnofthe failureof other group

members only through thisview mechanism, never through any sortofdirectobservation.

We assume that directcommunication between processesisalways possible;the software

implementing thisiscalledthe message transportlayer.Within our protocols,processes

always communicate using point-to-pointand multicastmessages; the lattermay be trans-

mitted using multiple point-to-pointmessages ifno more e_cient alternativeisavailable.

The transport communication primitivesmust provide lossless,uncorrupted, sequenced

message delivery.Our approach permits applicationbuildersto definenew transportpro-

tocols,perhaps to take advantage of specialhardware. Our initialimplementation uses

unreliabledatagrmns, but has an experimental protocol that exploitsethernet hardware

multicast.

The execution of a processisa partiallyordered sequence of events,each corresponding

to the execution of an indivisibleaction. An acyclicevent order, denoted p reflects

the dependence of eventsoccurring at processp upon one another. The event sendp(rn)

denotes the transmissionofrn by processp to a setof I ormore destinationsdest.s(rn);the

receiveevent isdenoted rc_p(rn).We omit the subscriptwhen the contextisunambiguous.

If[dests(rn)l> I we willassume that send puts messages intoallcommunication channels

ina singleactionthatmight be interruptedby failure,but not by other send or rcv actions.

We denote by rc,Jp(t_vi(g))the event by which a process p belonging to g "learns"of

We distinguishthe event of rece/t_nga message from the event of delivery,sincethisallows

us to model protocolsthat delay message deliveryuntilsome conditionissatisfied.The

delivery event is denoted deliver(m) where rcv(m) P-,deliver(m).

2.2 Properties required of multicast protocols

Although Isis makes heavy use of virtualsyuchrony,itwillnot be necessaryto formalize

thisproperty forour presentdiscussion.However, the support of virtualsyuchrony places

severalobligationson the processesin our system. First,when a process multicastsa

message m to group g, dears(m) must be the currentmembership of g. Secondly,when

the group view changes, allmessages sent in the priorview must be "_ushed" out of the

system (delivered)before the new view may be used. Finally,messages must satisfya

4



failure atomicity property: if a message m is delivered to any member of a group, and it

stay operational, m must be delivered to all members of the group even if the sender fails

before completing the transmission.

The multicast protocols that interest us here also provide delivery ordering guarantees. As

in [Lam78], we define the potential causality relation for the system, --., as the transitive
closure of the relation defined as follows:

1. If 3p : e_e I, then e--+e t

2. Vm : send(m)--_rev(m)

CBCAST satisfies a causal delivery property:

If m and m I are CBCAST's and send(m)_send(m') then

VpEdest.s(m)Ndests(m') : deliver( m )_ deliver( m').

If two CBCAST messages are concurrent, the protocol places no constraints on their

delivery ordering at overlapping destinations.

ABCAST extends the CBCAST ordering into a total one:

If m and m' are ABCAST's then either

1. YpEdests(m)ndests(m') : deliver(m)P deliver(m'), or

2. YpE dests( m )ndests( m') : deliver( m') P--,deliver( m ).

Because the ABCAST protocol orders concurrent events, it is more costly than CB-

CAST; requiring synchronous solutions where the CBCAST protocol admits efficient

asynchronous solutions. Birman and Joseph [BJ89] and Schmuck [SCh88] have exhibited a

large class of algorithms that can be implemented using asynchronous CBCAST. More-

over, Schmuck has shown that in many settings algorithms specified in terms of ABCAST

can be modified to use CBCAST without compromising correctness.

The protocols presented here all assume that processes only multicast to groups that they

are members of, and that all multicasts are to the full membership of a single group.

For demonstrating liveness, we will assume that any message sent by a process is eventually

received unless the sender or destination fails, and that failures are eventually reported

by ISIS.

3 The CBCAST bypass protocol

This section presents two basic CBCAST protocols for use within a single process group

with fixed membership. Both use timestamps to delay messages that arrive out of causal

order. The section that follows extends these schemes and then merges them to obtain a

single solution for use with multiple, dynamic process groups.



3.1 Timestamping protocols

We begin by describing two protocols for assigning timestaxaps to messages and for com-

paring t/mestsmps. The protocols are standard except in one respect: whereas most

timestamping protocolscount arbitrary"events",the ones defined here count only send

events.

3.2 Logical time

The firsttimestampin8 protocolisbased on one introduced by [Lam78], calledthe togica/

c/ockprotocol Ea_ process p maintains an unbounded local counter, LT(p), which it

initializes to zero. For each event send(m) at p, p sets LT(p) = LT(p) + 1. Messages

are timestmmped with the sender's incremented counter. A process p receiving a message

with timestaanp LT(m) sets LT(p) = maz(LT(p), LT(m)). As in [Lam78], one can show

that ifsend(m)--.send(m') then LT(m) </;T(m'). The converse,however, does not hold:

the protocolmay order messages that were sentconcurrently.

Note that the LT counter for a process is updated at the rcv event,as opposed to the

delit_revent,for an incoming message. We make use of thisproperty in the development

below.

-q

3.3 Vector time

A second timestamping protocolisbased on the substitutionof vectortimes for the local

counters in the logicaltime protocol.Vector times were proposed originallyin [MarS,i];

other reseaxchers have also _ them [Fid88,Mat89,LL86,Sch88]; our use of them is moti-

vated by an protocolpresentedin [SES89]. In comparison with logicaltimes, tkis protocol

has the aAv-Antage of representing _ precisely.

A vector time for a process p_, denoted VT(p_), is a vector of length n (where n = [P]),

indexed by process-id.

I. When Pi startsexecution, VT(p_) isinitializedto zeros.

2. For each event send(m) at pi, VT(pi)[i]isincremented by 1.

3. Each message sent by process pl is timestamped with the incremented value of

VT(p_).

4. When process pj delivers a message rn from p_ cont_g VT(ra), pj modifies its

vector time in the following manner:

Vkel..n : VT(pj)[k] = rnaz(VT(p#)[k], VT(m)[k])

Rules forcomparing vectortimes axe:
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1. VT 1 _ VT2 iffVi: VTI[i] < VT2[i]

2. VT1 < VT2 if VT1 < VT2 and 3i: VTI[i] < VT2[i]

Notice that in contrastto the rulefor LT(p), VT(p) isupdated at the deliverevent for

an incoming message. We willmake use of thisdistinctionbelow.

It can be shown that given messages m and m', send(m)_send(m') iff VT(m) < VT(m')

[MatS9,Fid88]: vector timestamps represent causality precisely. This constitutes the fun-

damental property of vector times, and the primary reason for our interest in such times

as opposed to logical ones.

3.4 Causal message delivery

Recallthatifprocessescommunicate using CBCAST, allmessages must be deliveredin

an order consistentwith causality.Suppose that a setof processesP communicate using

only broadcaststo the fullsetofprocessesin the system;thatis,Vm :dears(m) = P. This

hypothesisisunrealistic,but Section4 willadapt the resultingprotocolto a settingswith

multipleprocessgroups.I We now develop two deliveryprotocolsby which each processp

receivesmessages sent to it,delaysthem ifnecessary,and then deliversthem such that:

If send( m )--. send( m') then deliver( m )--. deliver( m').

8.4.1 LT protocol

Our firstsolutionto the problem isbased on logicaldocks; and isreferredto as the LT

protocolfrom here on. Itisrelatedto other solutionsthathave appeared in the literature

[Lam78,CASD86] and willbe used as a buildingblock lateron. The basictechniquewill

be to delay a message untilmessages with at leastas largea timestsmp has been received

from every other process in the system. However, sincethiswould only work ifevery

processsends an infinitestream ofmulticasts,a channelflushingmechanism isintroduced

to avoidpotentiallyunbounded delays.

Say that the channel from process pj to Pi has been flushed at time LT(m) if Pi will

never receive a message m' from pj with LT(m') < ZT(m). Flushing can be achieved

by pinging. To ping a channel, pi sends pj a timestamped inquiry message £nq, but

without first incrementing LT(pi). On receiving an inquiry pj, as usual, sets LT(pj) =

maz(LT(pj), LT(inq)) and replies with an ack message containing LT(pj), without mod-

ifying LT(pj). On receivingthe ack Pl,as usual,setsLT(pi) = maz(LT(pl), LT(ack)).

Ifno new messages are being multicast,pinging advances LT(pI) and LT(pj) to the same

v'J,lue.

The protocolisas follows:

tThis hypothesis is actually used only in the VT delivery protocol.
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2.

.

Before sending message m, process p_ increments LT(p_) and then timestamps m.

On receiving message m, process pj sets LT(pj) - maz(LT(pj), LT(m)). Then, p_

delays m until for all k _ i, the channel between pj and pk has been flushed for time

LT(m). pj does not delay messages received from itself.

If m has the minlm.m timestamp among messages satisfying (2), m may be deliv-
ered.

To prove that causaldeliveryisach/eved,considertwo messages such that send(mt)-.send(m2),

and hence LT(ml) < LT(m2). There are two cases:

io

o

The same process sends mz and m2. Because communication is FIFO, rnl willbe

received before m2, and because LT(ml) < ];T(m2), condition 3 guarantees that

ml willbe deliveredbeforem2.

Differentprocessessend mi and m 2. According to condition 2, m2 can only be

deliveredwhen allchannels have been flushedfor L,T(m2). As communication is

FIFO, and/;T(ml) < LT(m2), itfollowsthat ml has been received.Condition 3

then guarantees that ml willbe deliveredbeforem2.

The communication cost,however, is high: 2n -3 messages may be needed to flush

channels for every message delivered,hence to multicastone message, O(n 2) messages

could be transmitted. For infrequentmulticasting,thiscost may well be tolerable;the

overhead would be unacceptable ifincurred frequently. However, in place of pinging,

processescan periodicallymulticasttheirlogicaltimestamps to allother group members.

Receipt of such a multicastflushesthe channels: at worst, a received message willbe

delayed untilthe recipienthas multicastitstimestamp and allother processeshave done

a subsequent timestamp multicast.The overhead of the protocol can now be tuned fora

_iven environment.2

3.4.2 VT protocol

A much cheaper ution can be derived using vector timestamps; we will refer to this

as the P'T protocol The idea is basically the Sarae_Vn°-the/_T protocol, but because

Y'T(m)[k] indicates precisely how many multicasts by process Pt precede m, a recipient

of m will know precisely how long m must be delayed prior to delivery; ham_ely, uatil

_Readers familiar with the A-T re.time protocob of [CASD86]-_ note the _ty between that

protocol ud this version of ours. Clock synchronization (on which the A.T so.heine is based) is normally

done using periodic multicasts [ST87]. This modit_cation recalls suggestions made in _Lam78], and makes ;

logica_ clocks behave like weakly synchronized p_ysical clocks. Clock synchronization algodt!tms with

good messs4$e complexity are known, hence substitution of a A-T bsse_-p)b_o| for t_e-10giCffil clock-

based protocol in our "comblned" algorithm, below, iJ an intriguing direction for future study.



VT(m)[k] messages have been deliveredfrom pk. Since ---,isan acyclicorder accurately

representedby the vectortime,the resultingdeliveryorder iscausaland deadlock free.

The protocolisas follows:

1. Before sending m, process Pi increments VT(pi)[i] and timestamps m.

2. On reception of message m sent by pi and timestamped with VT(m), process pj _ pi

delays m until

vr(m)[i] = VT(p#)[i]+ 1
Vk # i: VT(m)[k] <. VT(pj)[k]

Process pj need not delay messages received from itself.

3. When a message m is delivered, VT(pj)[i] is incremented (this is simply the vector

time update protocol from Section 3.3).

Step 2 is the key to the protocol. This guarantees that any message m' transmitted

causally before m (and hence with VT(m') < VT(m)) will be delivered at pj before m is

delivered. An example in which this rule is used to delay delivery of a message appears

in Figure 1.

Pl

Time

Figure 1: Using the VT rule to delay message delivery

The correctness of the protocol will be proved in two stages. We first show that causality is

never violated (safety) and then we demonstrate that the protocol never delays a message

indefinitely (liveness).

Safety. Consider the actions of a process pj that receives two messages ml and m2 such

that send( mx )---}send( m2 ).



•Case 1. ml and m2 are both transmitted by the same process pi. Recall that we

assumed a lossless,sequenced communication system, hence pj receivesrnl before

m2. By construction, VT(ml) < VT(rn2), hence under step 2, rn2 can only be

deliveredafterrnl has been delivered.

Case 2. rnl and rn2 are transmittedby two distinctprocessesPl and Pi,.We willshow

by induction on the messages receivedby processp# that rn2 cannot be delivered

before rnl. Assume that rnl has not been deliveredand that pj has received k

messages.

Observe firstthat se1_d(rnl)---*s_(rn2),hence VT(rnl) < VT(rn2) (basicproperty

of vectortimes).In particular,ifwe consider the fieldcorresponding to processPi,

the sender of rnl,we have

VT(rnl)[i] <_ VT(rn2)[i] (1)

Base case, The first message delivered by pj cannot be rn2. Recall that if no

messages have been delivered to pj, then VT(pj)[i] - 0. However, VT(ml)[i] >

0 (because rnl is sent by pl), hence VT(m2)[i] > O. By application of step 2 of

the protocol, m2 cannot be delivered by pj.

Inductive step. Suppose pj has received k messages, none of which is a message

m such that send(ml)--.send(m). If ml has not yet been delivered, then

VT(pj)[i] < VT(rnl)[i] (2)

This followsbecause the only way to assigna value to VT(pj)[i]greaterthan

VT(rnl)[i]isto delivera message from pi that was sentsubsequent to rnl,and

such a message would be causallydependent on rnx.From relationsI and 2 it

follows that

VT(pj)[i] < VT(m2)[i]

By applicationof step 2 of the protocol,the _ + l'stmessage deliveredby pj

cannot be rn2.D

Liveness. Suppose that there existsa broadcast message rn sent by processpi that can

never be deliveredto processpj. Step 2 impliesthat either:

VT(m)[il V2'(p#)[i]+ I,or

3k i: >

and that m was not transmitted by processpj. We considerthese casesin turn.

1. VT(m)[i] _ VT(pj)[i] + 1, that is, m is not the nezt message to be delivered from Pi

from pj. Since all messages are multicast to all processes and channels are lossless

and sequenced, itfollowsthat there must be some message rn_ sent by pi that pj

receivedpreviously,has not yet delivered,and with VT(ra')[i]= VT(p#)[i]+ i. If

rn_isalsodelayed,itmust be under the other case.
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o qk # i : VT(m)[k] > VT(pi)[k ]. Let n = VT(m)[k]. The n'th transmission of

process p_, must be some message m'_m that has either not been received at pj,

or was received and is delayed. Under the hypothesis that all messages are sent

to all processes, m _ was already multicast to pj. Since the communication system

eventually delivers all messages, we may assume that m _ has been received by pj.

The same reasoning that was applied to m can now be applied to m _. The number

of messages that must be delivered before m is finite and > is acyclic, hence this
leads to a contradiction. O

4 Extensions to the basic protocol

Neitherof the protocolsin Section3 issuitableforuse in a virtuallysynchronous setting

with multipleprocess groups and dynamically changing group views. This sectionfirst

extends the simple VT CBCAST protocol of Section 3.4.2into one suitablefor use

with multiplebut staticprocessgroups,but arrivesat a protocolsubjectto a significant

constraint on what we call the communication structure of the system. Then, we show

how to combine the protocol with other mechanisms, notably the LT CBCAST protocol

of Section 3.4.1, to overcome this limitation. We arrive at a powerful, general solution.

4.1 Transmission limited to within a single process group

The firstextensionto the VT protocolisconcerned with processesthat multicastonly

within a singleprocessgroup at a time. This problem isdearly trivialifprocessgroups

don'toverlap,a property thatcan be deduced at runtime (seeSection4.4.4).On the other

hand, we have assumed thatoverlapwillnot be uncommon. Such scenariosmotivate the

seriesof changes to the algorithmpresentedin thissectionand the ones that follow.

The firstchange isconcerned with processesthatbelong tomultiplegroups,e.g.a process

p_ belongs to groups go and gb,and multicastsonly within groups. Multicastssentby p_

to ga must be distinguishedfrom those to gb,sincea processpj belongingto gb and not

to ga that receivesa message with VT(m)_'] = k willotherwisehave no way to determine

how many of thesek messages were senttogb and hence precede m causally.This leadsus

to extend the singleVT clockto multipleVT docks; VTa isthe logicalclock associated

with group ga, and VT,_[i]thus counts multicastsby processp_ to group ga.3 Processes

maintain VT clocksforeach group in the system, and attachallthe VT clocksto every

message that they multicast.

The next change istostep2ofthe VT protocol.Suppose thatprocesspj receivesa message

m sent in group g,_with senderp_,and that pj alsobelongs to groups (gl,...,gn}- G#.

Step 2 can be replacedby the followingrule:

_Cleffirly,ifp_isnota member ofgG,thenVTo[s]-_0,thusallowinga sparserepresentationofthe
timestamp.Forclarity,we willcontinuetorepresenteachtimestampVTg asa vectoroflengthn,witha

specialentry•foreachproce_thatisnota member ofgo.

11



2' On receptionof message m from Pi _ Pj, sentin ga_processpj delaysm until

2.1' VTa(m)[i] = VT.(pj)[i] + 1, and

2.2' vt : (pk_9. ^ _ _ i) : vr.(m)[_] < vr(p,)[k], and
2.3'Vg: (gEGj) : VTg(m) < VTg(pj).

As above, pj does not delay messages receivedfrom itself.

Figure 2 illustratesthe applicationof thisrulein an example with four processesinto

groups identiliedas Pl...P4.Processespl, p_ and pa belong to group Gz, and processesp2,

FJ and p4 to group G2. Notice that m2 and ra3 axe delayed at Fa, because itisa member

of G_ and must receive ml first. However, m2 is not delayed at P4, because P4 is not a

member of G1. And m3 is not delayed at/_, because p_ has already received ml and it

was the sender of m2.

Pl

P2

P3

P4

0,,),(,,0,0:0)) /

/m,: ((1,1, o,,1,(,, 1,o,111

' -_2: ((1,o,o,,),(,,1,o,o)) • ._,._

.." ,_3: ((1,o,o,,), (,, 1,o,1))
t

Figure 2: Messages sent within processgroups. GI = (P1,P2,Fa} and G2 = {P2,pa,p4}

The proof of Section3 adapts without dLfficultyto thisnew situation;we omit the aeaxly

identicalargument. One can understand the modified VT protocolinintuitiveterms. By

ignoring the vector timestamps for certaingroups in step 2.3',we are assertingthat there

isno need to be concerned that any undellveredmessage from thesegroups could causally

precede m. But, the ignored entriescorrespond to groups to which pj does not belong,

and itwas assumed that allcommunication isdone within groups.

4.2 Use of partial vector timestamps

Until the present, we have associated with each message a vector time or vector times

having a total size determined by the number of processes and groups comprising the
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application.Although such a constraintarisesin many published CBCAST protocols,

the resultingvectorsizeswould rapidlygrow to dominate message sizes.A substantial

reductionin the number ofvectortimestamps,that each processmust maintain and trans-

mit ispossiblein the caseof certaincommunication patterns,which are definedprecisely

below. Even ifcommunication does not always followthese patterns,our new solution

can form the basisof other slightlymore costlysolutionswhich are alsodescribedbelow.

Define the communication structureof a system to be an undirectedgraph CG = (G, E)

where the nodes, G, correspond to processgroups and edge (gl,g2) belongs to E iffthere

existsa processp belongingtoboth gl and g2. Ifthe graph soobtaiued has no biconnected

component 4 containingmore than k nodes,we willsay thatthe communication structure

of the system isk-bounded. In a k-bounded communication structure,the length of the

largestsimple cycleis k. s A 0-bounded communication structureisa tree(we neglect

the uninterestingcaseof a forest).Clearly,such a communication structureisacyclic.

Notice that causalcommunication cyclescan ariseeven ifCG isacyclic.For example,

in figure2, message ml, rn2,rn3 and 1714form a causalcycle spanning both gl and g2.

However, the acyclicstructurerestrictssuch communication cyclesin a usefulway - such

cyleswilleitherbe simplecyclesoflength2, or complex cycles.

Below, we demonstrate that itisunnecessary to transportallvectortimestamps on each

message in the k-bounded case.Ifa given group isin a biconnectedcomponent of sizek,

processesin thisgroup need only to maintain and transmit timestamps forother groups

in thisbiconnected component. We can alsoshow that they need to maintain at least

these timestamps. As a consequence,ifthe communication structureisacyclic,processes

need only maintain the timestamps forthe groups to which they belong.

We proceed to the proof ofour main resultin stages.Firstwe address the specialcaseof

an acycliccommunication structure.

Lemma 1: If a s!lstem has an acTtclic communication structure, each process in the s_ls-

tern onl!l maintains and rnulticast the VT tirnestarnps of groups to which it belongs.

Noticethatunder thislemma, the overhead on a message islimitedby the sizeand number

of groups to which a processbelongs.

We wish to show that ifmessage rnl issent (causally)beforemessage rnk,ther "'iwill

be deliveredbeforern_ at alloverlappingsites.Consider the chain of messages below.

ml m2 m3 mk-1 mk

pl ....> p2 ....> p3 .... > .... ----> pk .... > pk+l

gl g2 g3 gk- 1 gk

This schema signifies that process Pl multicasts message rnx to group gx, that process

172 first receives message rnl as a member of group gl and then multicasts rn2 to g2,

4Two vertices are in the same biconnected component of a graph if there is a path between them after

any other vertex has been removed.

SThe nodes of a simple cycle (other than the starting node) are d'tstinct; a complex cycle may contain

arbitrary repeated nodes.
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a_d so forth. T. general, gi may be the same as gj for i _ j _nd pi and pj may be

the same even for i _ j (in other words, the processes pi and the groups g_ are not

necessarily all different). Let the term message chain denote such a sequence of messages,

and let the notation m_-_mj mean that p transmits mj using a timestamp VT(mj) that

directly reflects the transmission of m_. For example, say that m_ was the k'th message

transmitted by process pl in group g4. We will write m_Pmj iif VTa(pj)[i] >_ ]c and

consequently VTa(rnj)[i] >. Ic. Our proof will show that if m_--,mj and the destinations

of mi and mj overlap, then miami, where pj is the sender of mj.

We now note some simple facts about this message chain that we will use in the proof.

Recall that a multicast to a group ga can only be performed by a process Pi belonging to

ga. Also, since the communication structure is acydic, processes can be members of at

most two groups. Since mk and ml have overlapping destinations, and p2, the destination

of ntl, is a member of g_ and of g2, then gk, the destination of the final broadcast, is

either gl or g2. Since CG is acydic, the message chain ml...m_ simply traverses part of

a tree reversing itself at one or more distinguished groups. We will denote such a group

gr. Although causality information is lost as a message chain traverses the tree, we will

show that when the chain reverses itself at some group g,., the relevant information will

be "recovered _ on the way back.

Proof of Lemma 1: The proof is by induction on l, the length of the message chain

rn1...mh. Recall that we must show that if m] and mk have overlapping destinations, they

will be delivered in causal order at all such destinations, i.e ml will be delivered before

mk.

Base case. I = 2. Kere, causal delivery is trivially ar.kieved, since Pk -- P2 must be a

member of gl and m_ will be transmitted with gl's timestamp. It will therefore be

delivered correctly at any overlapping destinations.

Inductive step, Suppose that our algorithm delivers aJl pairs of causally related mes-

sages correctlyifthere isa message chain between them of length I </_. We show

that causalityisnot violatedformessage chainswhere [= k.

Consider a point in the causalchain where itreversesitself.We representthisby

n__1-,m,-,m,J-,m,+1, where m,__ and m,+_ are sent in g,-I =---gr+1 by p, and

P,+I respectively,and m, and mr, axe sent in g, by p,.and p,.,.Note that p,.and

P,+1 are members ofboth groups. This isillustratedin Figure 3. Now, mr, willnot

be deliveredat P,+1 untilm, has been deliveredthere,sincethey are both broadcast

in G,. We now have m,_1 _ m, _,_+tm,+1. We have now establisheda message

chain between rnl and me where I < k. So, by the induction hypothesis,ml will

be deliveredbeforem_ at any overlappingdestinations,which iswhat we setout to

prove, c3

We now proceed to prove the main theorem.
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Figure 3: Causal Reversal

Theorem 1: Each process Pi in a s_tstem needs only to maintain and multicast the VT

timestamps of groups in the biconnected components of CG to which pi belongs.

Proof: As with Lemma 1, our proof will focus on the message chain that established

a causal link between the sending of two messages with overlapping destinations. This

sequence may contain simple cycles of length up to k, where k is the size of the largest

biconnected component of CG. Consider the simple cycle illustrated below, contained in

some arbitrary message chain.

ml mc mc+l

pl ....> ... p2 .... > p3 .... >

El gc gl

Now, since pl,/>2 and p3 are all !u groups in a simple cycle of CG, all the groups are in the

same biconnected component of CG, and all processes on the message chain will maintain

and transmit the timestamps of all the groups. In particular, when me arrives at P3, it

will carry a copy of VTgl that indicates that ml was sent. This means that me will not

be delivered at/>3 until ml has been delivered there. So me+l will not be transmitted

by P3 until ml has been delivered there. Thus mlP-_*mc+l. We may repeat this process

for each simple cycle of length greater than 2 in the causal chain, reducing it to a chain

within one group. We now apply Lemma 1, completing the proof, rl

Theorem 1 shows us what timestamps are sufficient in order to assure correct delivery of

messages. Are all these timestamps in fact necessary? It turns out that the answer is yes.

It is easy to show that if a process that is a member of a group within a biconnected corn-
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ponentof CG does not maintain a TIT timestamp for some other group in CG, causality

may be violated. We therefore state without formal proof:

Theorem 2: If a system uses the VT protocol to maintain causality, it _s both necessary

and su_cient /or a process p_ to maintain and transmit Owse VT timestamps correspond-

ing to groups in the biconnected component o/CG to which Pi belongs.

4.3 Extensions to arbitrary communication structures

In general, managing information concerning the biconnected components of CG may be

ditBcult, especially in a dynamic environment. We believe that the most practical use of

the above result is in the acyclic case, since a process can conservatively determine that it

is not in any cycle by observing that the group of which it is a member overlaps with at

most one other group - a completely local test (but see also Section 4.4.4). Consequently,

although all our results generalize, the remainder of the paper focuses on the acydic

solution, and we initially implemented only the acydic solution in Isis. In this section,

we give two protocols that work in more general communication structures. The first

protocol does not use any knowledge about the communication structure, but it sometimes

imposes delays on message multicasting. The second protocol does use knowledge about

the communication structure, but does not impose delays on message mnlticastiag. We

then extend both protocols to arbitrary dyn_c c0mmuv.ication structures.

4.3.1 Conservative solution

Our first solution is denoted the conservative protocol Eac.h multicast m is followed by a

second multicast l:erminal;e(m) sing that m has reached all of its destinations. The

sender of a multicast will normally know when to send the l:er_inal;e as a side-effect of

the protocol used to overcome packet loss. The l:Qrai_al:e message may sent as a separate

mnlticast, but it can also be piggybacked on the next CBCAST sent to the same group.

A "cerm:Lua_e message is not itself terminated.

We will say that a group is active/or process p, if:

1. p is the initiator of a multicast to g that has not terminated, or

2. p has received an unterminated multicast to 9, or

3. p has delayed the local deliv'ery of a multicast to g (sent by some other process f).

Note that this is a local property; i.e. process p may compute whether or not it is active

for some group g by examining its local state. The conservative muIticast r_de states that

a process p may multicast to group g iff g is the only active group for process p or p

has no active groups. 1VIulticasts are sent using the VT protocol, as usual. Notice that

this rule imposes a delay only when two causally successive messages are sent to different
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groups. The conservative solution could be inefficient, but _'ields a correct VT protocol.

However, the overhead it imposes could be substantial if processes multicast to several

differentgroups in quick succession,and itissubject to potentialstarvation(thiscan,

however, be overcome).

The conservativesolutionwillwork correctlyeven ifgroup membership changes dynami-

cally.

For brevity,we omit the correctnessproof of thissolution. The key point isthat if

p multicastsm to g2 aftergl has ceased to be active,then there are no undelivered

multicastsm _ in gl s.t.m_m. This can be demonstrated by showing that ifgl isno

longeractiveand m_m, then m _has terminated.

4.3.2 Excluded Groups

Assume that CG contains cycles,but that some mechanism has been used to selecta

subset of edges X such that CG' = (G, E - X) isknown to be acyclic.We extend our

solutionto use the acyclicVT protocolfor most communication within groups. Ifthere

is some g_ such that (g,gr)EX we willsay that group g isan ezcludedgroup and some

multicaststo or from g willbe done usingone of the protocolsdescribedbelow.

Keeping trackof excluded groups could be difficult;however itiseasy to make pessimistic

estimates (and we willderivean protocolthat works correctlywith such pessimistices-

timates).For example, in Isls,a processp might assume that itisin an excluded group

ifthere ismore than one other neighboringgroup. This isa safeassumption; any group

in a cyclein CG willcertainlyhave two neighboringgroups. This subsectionand the two

that followdevelop solutionsforarbitrarycommunication structures,assuming that some

method such as the previousisused to safelyidentifyexcluded groups.

4.3.3 Combining the VT and LT protocols

Recall the LT multicastprotocol presented in Section 3. The protocol was inefficient,

but required that only a singletimestamp be sent on each message. Here, we run the

LT and VT protocolssimultaneously,piggybacking on each message both LT and VT

timestamps, and apply a unifiedversionof the LT and VT deliveryschemes on receipt.

The LT timestamp isnotincremented on everybroadcast;itisonlyincremented on certain

broadcasts as describedbelow. This greatlyreduces the number of extra messages that

would be induced by the basicLT algorithm.

Say that m isto be multicastby p to group g. We say thatp isnot safein g if:

• The last message p received was from some other group g'.

• Either g or g_ isan excluded group.
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Our protocol rule is simple; on sending, if process p is not safe in group g, p will incre-

ment both its' LT timesamp and its' VT timestamp before multicasting a message to g.

Otherw/se, it will just increment its' VT timestamp. A message is delivered when it is

deliverable according to both the LT delivery rule and the VT delivery rule.

Notice that the pinging overhead of the LT protocol is incurred only when logical clock

values actually change, which is to say only on communication within two different groups

in immediate succession, where one of the groups is excluded. That is, if process p executes

for a period of time using the VT protocol and receives only messages that leave/;T(p)

unchanged, p will ping each neighbor processes at most once. Clocks will rapidly stabilize

at the maximum existing LT value and pinging will then cease.

Theorem $: The combined VT-LT protocol wiU always deliver messages correctly in ar-

bitrar_ communication structures.

Proof: Consider an arbitrary message chain where the first and last messages have over-

lapping destinations. Without loss of generality, we will assume that gz...gk are distinct.

We wish to show that the last message will be delivered after the first at all such destina-

tions.

ml m2 m3 mk-1 mk

pl .... > p2 .... > p3 .... > .... ----> pk .... > pk+1

gl g2 g3 gk- 1 gk

If none of gz...gi is an excluded group, then, by Lemma 1, ml will be delivered before

rne at all overlapping destinations. Now, if some group gl is excluded, two cases arise -

either the last group, gh is excluded, or some other group is excluded. If gk is excluded,

then pk will "increment its LT timestamp at some point between delivering me-z and

sending me. If some other group g_ is excluded, i < k, then pk+z will increment its LT

timestamp between delivering me and sending me+l. So the LT timestamp of m_ will

always be greater than the LT timestamp of mz, and mk will be delivered after mz at all

overlapping destinations. G

4.4 Dynamic membership changes

We now consider the issue of dynamic group membership changes when using the corn-

blued protocol. This raises several issues that are addressed in turn: virtually synchronous

addressing when joinsoccur,initializingYT timestamps, atomicity when failuresoccur,

and the problem of detectingpropertiesof CG at runtime, such as when a process deter-

mines that its'group adjoinsat most on one other and hence always uses the acyclicVT

protocol.
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4.4.1 Joins

To achieve virtually synchronous addressing when group membership changes while multi-

casts are active, we introduce the notion of flushing the communication in a process group.

Consider a process group g in group view v/ewi(g). Say that a new view v/ewi+l(g) now

becomes defined. There are two cases: v/e*ai+l(g) could reflect the addition of a new

process, or it could reflect the departure (or failure) of a member. Assume initially that

view changes are always due to adding new processes (we ]_andle failures in Section 4.4.3).
We win flush communication by having all the processes in v/ewi+l(g) send a message

"flush £+1 of g", to all other members. During the period after sending such messages

and before receiving such a flush message from all members of v/etoi+l(g) a process win

accept and deliver messages but win not initiate new multicasts.

Because communication is FIFO, if process p has received a flush message from all mem-

bers of g under view i + 1, it win first have received any messages sent in view i. It

follows that all communication sent prior to and during the flush event was done using

VT timestamps corresponding to views(g), and that all communication subsequent to

installing the new view is sent using VT timestamps for vietoi+l(g). This establishes that

multicasts win be virtually synchronous in the sense of Section 2.

4.4.2 Initializing VT fields

Say that process pj is joining group ga. Then pj will need to obtain the current VT

values for other group members. Because pj participates in the flush protocol, this can

be achieved by having each process include its VT value in the flush message, pj will

initialize VTa[i] with the value it receiy_es in the flush message from Pi; Pj initializes

to0.

4.4.3 Failure atomicity

What about the casewhere some member ofg failsduring an execution? _'iewi+l(g) Win

now reflectthe departure ofsome process.Assume that processpj has receiveda message

m that was multica.stby processPi.Ifpi now failsbeforecompleting itsmulticast,there

may be some thirdprocessPk thathas not yet receiveda copy ofm. To solvethisproblem,

pj must retaina copy of alldeliveredmessages, transmittinga copy of messages initiated

by pi to other members of _(g) ifPi fails.Processesi_lentifyand rejectduplicates.

Multicastingnow becomes the same two-phase protocolneeded to implement the conser-

vativerule.The 1:Qrmina1:emessage indicateswhich messages may be discarded;itcan

be sent as a separate message or piggybacked on some other multicast.

On receivingviewk(g) indicatingthat Pifailed,pj runs thisprotocol:

1. Close the channel to Pi.
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2. For any unterminated multicastm initiatedby p_,send a copy of m to allprocesses

in t_k(g) (duplicatesare discardedon reception).

3. Send a flush message to allprocessesin t_e_k(g).

. Shnulate receiptof fZush and ack messages from Pi as needed by the channel and

view flushprotocols,and treatany message being senttoiDias having been delivered

in the conservativeprotocol (Section4.3.1).

5. After receivingfZush messages from allprocessesin t,iew_(g),discardany messages

delayed pending on a message from pi.

6. p# ceasestomaintainVTg[i].

Step 2 ensures atomicityand step 4 preventsdeadlock in the VT, LT and the conservative

protocol. Step 5 relatesto chains of messages m1_rn2 where a copy of rn2 has been

receivedbut ml was lostin a failure;thiscan only happen ifevery processthat received

ml has failed(otherwisea copy of ml would have been receivedprior to receiptof the

flush message). In such a situation,m2 willnever have been deliverableand hence can

be discarded.

This touches on an important issue. Consider a chain of communication that arises

to a processgroup but dependent on a multicastwithin that group. Earlier,we

showed that causal deliveryisassured by the acyciicVT protocol,but thisassumed that

multicastswould not be lost.Instead,say that processesPI and P2 belong to group gl and

that processi_ alsobelongs to g2. PI multicastsmx to gl;P2 receivesmx and multicasts

m2 to g2. Now, ifi_ and P2 both fail,itmay be that ml islostbut that m2 isreceived

by the members of gl n g2 that are stilloperational.

Severalcasesnow arise,alltroubling.Consider a processq that receivesm2. Ifq receives

rn2 prior to running the failureprotocol,it willdiscard it under step 5. If q receives

m2 afterrunning the failureprotocol,however, itwillhave discardedthe VT fieldcorre-

sponding to Fi. m2 willnot be delayed pending receiptof ml and hence willultimately

be delivered,violatingcausality.(q cannot discardrn2 because itmay have been deliv-

ered elsewhere.)We thus see that both causalityand atomicitycould be violatedby an

unfortunate sequence of failurescoincidentwith a particularpattern of communication,

and that the system willbe unable to detectthat thishas occurred.

One way to avoid thisproblem is to requirethat processesalways use the conservative

ruleof Section 4.3.1,even ifthe communication structureisknown to be acyclic.In our

example, thiswould preventP2 from communicating ing2 untilrnlreached itsdestinations.

Recallthat step4 ofthe protocolgiven above preventsthe conservativerulefrom blocking

when failuresoccur.

An alternativeis to accept some riskand operate the system unsafely. For example,

a process might be permitted to initiatea multicastto group g oniy ifallof {_ orlon
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multicasts to other groups have been delivered to at least one other destination process;

this yields a protocol tolerant of any single failure. 6

Given a 1-resilient protocol, the sequence of events that could cause causal delivery to be

violated seems quite unlikely. A k-resilient protocol can be built by also delaying receivers;

for large k, this reverts to the conservative approach.

We believe that even for a 1-resilient protocol, the scenario in question (two failures that

occur in sequence simultaneously with a particular pattern of communication) is extremely

improbable. The odds of such a sequence occurring is probably outweighed by the risk of

a software bug or hardware problem that would cause causality to be violated for some

mundane reason, like corruption of a timestamp or data structure.

Our initial implementation of bypass CBCAST uses the conservative solution between all

groups; i.e. al_ groups are excluded. The VT protocol is used for communication within a

group. This version of Isis is thus immune to the causality and atomicity problems cited

above, but incurs a high overhead if processes multicast to a series of groups in quick

succession, which is not uncommon. Our plan is to modify the implementation to use

the more optimistic protocols in a 1-resilient manner, but to provide application designers

with a way to force the system into a completely safe mode of operation if desired. It

should be noted that limitations such as this are common in distributed systems; a review

of such problems is included in [BJ89]. We are not alone in advocating a "safe enough"

solution in order to increase performance.

4.4.4 Dynamic communication graphs

A minor problem arises in applications having the following special structure:

1. The combined VT-LT protocol is in use.

2. Processes may leave groups other than because of failures (in Isis, this is uncommon

but possible).

3. Such a process may later join other groups.

Earlier, it was suggested that a process might observe that the (single) group to which

it belongs is adjacent to just one other group, and conclude that it cannot be part of a

cycle. In this class of applications, this rule may fail.

To see this, suppose that a process p belongs to group gl, then leaves gl and joins g2. If

there was no period during which p belonged to both gl and g2,P would use the acyclic

VT protocolfor allcommunication in both gl and g2. Yet,itisclearthatp representsa

path by which messages sentin g2 could be causallydependent upon messages p received

6When usinga transportfacilitythatexploitsphysicalmulticMtsuchamessagewillmost oftenhave
reached all of its destinations.

21



in gl, leading to a cyclicmessage chain that traversesgl and g_. This creates a race

conditionunder which violationsof the causaldeliveryordering could result.

This problem can be overcome in the followingmanner. Associate with each group a

counter of the number of other groups to which ithas ever been adjacent;thisrequires

only a trivialextension of the ilushprotocol.Moreover, say that even aftera process p

leavesa group gl, itreportsitselfas a onetime member of gl. Ifp joinssome group g2,

the adjacency count for g2 willnow reflectitsprior membership, and ifa causal chain

could possibly arise,multicastswillbe under the exclusionrule. Clearly,thissolution

is conservativeand could be costly. On the other hand, say that it is known that all

multicaststerminate within some time delay _. Then one could decrement the adjacency

counter for a group aftera delay of<7time unitswithout risk.In Isls,a reasonablevalue

of _ would be on the order of 2-3 seconds.

We have developed more sophisticatedsolutionsto thisproblem, but omit thesebecause

the issueonly arisesin a small classof applications,cud the methods and theirproofsaxe

complex.

4.4.5 Recap of the extended protocol

In presenting our algorithm as a basic scheme to which a series of extensions and modi-

i_cations were made, we may have obscured the overall picture. We conclude the section

with a briefsummary of the protocol as we intend to use itin Isls.

The protocolwe ultimatelyplan to use inIslsisthe acyclicVT solutioncombined with the

LT protocol.This protocolpiggybacks an LT timestamp and a listofVT timestamps on

each message, one VT vectorfor each group to Which the sender of the message belongs.

In addition to the code for delaying messages upon reception,the protocolimplements

the channel- and view-flushand terminate Mgorithms.

Under most conditionsthe Islssystem willbe operated conservatively,excluding groups

adjacent to more than one neighboring group. As noted above, neighboring groups can

be counted by piggybacking information on the view-flush protocol. Looking to the

future, we expect to develop Isis subsystems that will have special a-pr/oP/knowledge

of the communication structure. These subsystems will make use of an Isis system _-dl

pg_excluda(g_amo, TRUE/FALSE) toindicatethe exclusionstatusof groups. We curently

have no plans to develop sophisticatedcommunication topology algorithmsfor isls.

The initialIsls implementation consistsof the VT scheme and the conservativerule,

togetherwith the view-flushand terminateprotocols.We expect to add the LT extension

shortly;the necessary code issmall compared to what isalready running.
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5 Other communication requirements

In this section we consider some minor extensions of the protocol for other common

communication requirements.

5.1 A Bypass ABCAST protocol

Readers may wonder if the bypass CBCAST protocol can be extended into a fast AB-

CAST mechanism. ABCAST is a totally ordered communication protocol: all destina-

tions receive an ABCAST message in a single, globally fixed order.

The answer to this question depends on the semantics one associates with ABCAST

addressing. One way to define ABCAST is to say that two ABCAST's to the same

logical address will be totally ordered, but to make no guarantees about ordering for

ABCAST messages sent to different addresses. A more powerful alternative is to say

that regardless of the destination processes, if two ABCAST's overlap at some set of

destinations, they are delivered in the same order. Although Isis currently supports the

latter approach, it is far easier to implement a bypass ABCAST with the weaker delivery

semantics; the resulting protocol resembles the one in [CM84]. This is in contrast with

bypass CBCAST, which always achieves causal ordering.

Associated with each view views(g) of a process group g will be a token holder process,

token(g)Eviewi(g). If the holder fails, the token is automatically reassigned to a llve

group member using any well-known, deterministic rule. Assume that each message m is

uniquely identified by uid(m).

To ABCAST m, a process holding the token uses CBCAST to transmit m. If the

sender is not holding the token, the ABCAST is done in stages:

1. The sender CBCAST's a needs-order message containing m. r Processes receiv-

ing this message delay delivery of ra.

2. If a process holding the token receives a needs-order message, it CBCAST's a

sets-order message giving a list of one or more messages, identified by uid, and

the order in which to deliver them, which it may chose arbitrarily. If desired, a new

token holder may also be specified in this message.

3. On receipt of a sets-order, a process notes the new token holder and delivers

delayed messages in the specified order.

4. On detection of the failure of the token holder, after completing the flush protocol,

all processes sort pending ABCAST's and deliver them in any consistent order.

7It might appear cheaper to forward such a message directly to the token holder. However, for a
moderately large messages such a solution will double the IO done by the token holder, creating a likely
bottleneck, wldle reducing the IO load on other destinations only to a minor degree.
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This protocol is essentiallyidenticalto the replicateddata protocol proved correctin

[BJ89,Sch88]. Step 4 iscorrectbecause the flushensures thac any set-orclQr messages

willhave been deliveredatomically,hence all processeswillhave the same enqueued

messages which they deliver_ediately beforeinstallingthe new view.

The costofdoing a bypass ABCAST depends on the locationswhere multicastsoriginate

and frequency with which the token ismoved. Ifmulticaststend to originateat the same

process repeatedly,then once the token ismoved to that site,the costisone CBCAST

per ABCAST. Ifthey originaterandomly and the token isnot moved, the costisI+ I/k

CBCAST's per ABCAST, where we assume that one so1:oorder message issent for

ordering purposes once for every k ABCAST's. This representsa major improvement

over the existingIslsABCAST protocol.However, because bypass ABCAST achieves

a weaker form of ordering,itmight requirechanges to existingIslsapplications.We have

not yet decided whether to make itthe default.

4

5.2 Point-to-point messages

Early in the the paper,we assertedthatasynchronous CBCAST isthe dominant protocol

used in Isls.Point-to-pointmessages, arisingfrom repliesto multicastrequestsand and

RPC interactions,are also common. In both cases,causal deliveryis desired. Here, we

considerthe caseofpoint-to-pointmessages sentby a processp within a group G to which

p belongs.

A straightforwardway to incorporatepoint-to-pointmessages intoour VT protocolisto

requirethat they be acknowledged and to inltibitthe sending of new multicastsduring

the period between when such a message istransmittedandwhen the acknowledgement is

received(in the case of an RPC, the reply isthe acknowledgement). The recipientisnot

inhibited,and need not keep a copy of the message. A point-to-pointmessage istimes-

tamped using the sender's lo_cM_d_vector t_es,_d deliv_ usin _ the co_esponding

delivery algorit_, but neither timestamp is incremented prior to transm]ssion_ In effect,

point-to-point Rtessages are treated as events internal to the processes involved.

The argument in favor of this method is that a single point-to-point R.PC is fast and

the cost is unaffected by the size of the system. AIthough one can devise more complex

methods that _ate the period of inhibited multicasting, problems of fault-tolerance
render them less desirable. - ....

5.3 Subset multicasts

Some Islsapplicationsform largeprocessgroups but requirethe abilityto multicastto

subsets of the totalmembership. Our protocol is easilyextended into one supporting

subset multicast,and our initialIslsimplementation supports thisas an option. When

enabled, a VT vectortimestamp of length sn isneeded for a group with s senders and n

members.
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For example, a stock brokerage might support a quote dissemination service with two or

three transmitters and hundreds of potential recipients. Rather than form a subgroup

for each stock (costly approach if there are many stocks), each multicast could be sent

to exactly those group members interested in a given quote. We omit the details of the
subset multicast extension.

6 Performance and transport protocol selection

In this section, we discuss the performance of our protocol. We show that the performance

of the bypass protocol will be largely dominated by the performance of the underlying

layer that is simply concerned with moving data from one site to others. We discuss the

design of some alternatives for this layer, which we are currently implementing.

6.1 Complexity and overhead of the protocol

Implementation of the bypass protocol was straightforward in Is IS, requiring less than 1300

lines of code out of the total of 52,000 in the protocol layer of the system. Extensions

to support the LT protocol will add little additional code. Initial measurements of

performance demonstrate a five to tenfold speedup over the prior Isis protocols.

Our protocol has an overhead of both space and messages transmitted. The size of a

message will be increased by the vector time fields it carries; as noted above, the number

of such vectors is determined by the total cardinality of the groups to which the sender

belongs directly, and hence will be small. The number of overhead messages sent will

depend on the number of non-piggybacked terminal:e messages sent by the conservative

protocol and, when implemented, the frequency of LT pinging. In Isls, LT pinging is

expected to be rare and terminate messages are always piggybacked on a subsequent

CBCAST unless communication in a group quiesces. (As noted before, LT overhead can

be bounded using a periodic protocol, if necessary).

We believe that latency, especially when the sender of a multicast must delay before

continuing computation, is the most critical and yet unappreciated form of overhead.

Delays of this form are extremely noticable. In many systems, there is only one active

computation at a given instant in time, or a single computation that holds a lock or other

critical resource. Delaying the sender of a multicast may thus have the effect of shutting

down the the entire system. In contrast, the delay between when a message is sent and

when it reaches a remote destination is less relevant to performance. The sender may

be delayed in two ways: if the transmission protocol itself is computationally costly, or

if a self-addressed multicast cannot be delivered promptly because it is unsafe to do so.

Defined in this sense, our method imposes latency on the sender of a multicast only in the

conservative protocol, and only when a process switches from multicasting in one group

to another, or needs to communicate in one group after receiving in another. Otherwise,

the protocol is totally asynchronous. Latency on the transport side is less critical. The
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dominant source of transportlatencyis LT pinging,and we plan to quantify thiseffect

by instrumenting Islsand using simulations.

6.2 Implementation

An interestingfeatureof the bypass facilityisthat itassumes very littleabout communi-

cationbetween processes,and communicates in an extremely regularmanner. Specifically,

the protocol we ended with sends or mnlticastsonly within groups to which a sending

process belongs, and requiresonly that inter-processcommunication be sequenced and

lossless.The idea ofproviding an interfaceby which the bypass multicastprotocolscould

run over a lower-layerprotocolprovided by the applicationappealed to us,and as part of

the Islsimplementation of bypass CBCAST and ABCAST, we included an interface

permittingthistype ofextension.We callthislower layerthe rn_tica.sttransportprotocol.

A multicast transport protocol simply deliversmessages reliably,in FIFO order,to the

groups or processesaddressed.

When no specialhardware formulticastingisavailable,the basicIslsmulticasttransport

protocolisbased on UDP (unreliabledatagrams). When multicastinghardware isavail-

able,Islscan switch to an experimental mnlticasttransportprotocolthattakes advantage

ofsuch hardware. The remainder of thissectiondetailsthe design,performance and over-

head of these muiticasttransport protocols(in time, size,and messages exchanged per

multicast).

6.3 Overhead imposed by the basic VT Protocol

This sectionbreaks down the costswe see in terms ofv',u-iouscomponents of the overhead

(createa lightweight task,do the I/O, selectsystem call,createthe packets,reconstruct

them on reception).Figure 4 breaks down the basic CPU costsof sending and receiving

messages in our implementation. These j_res are preH,'n_naWam/_/_l be reused. These

figuresare for the combined protocol,but they do not reflecthigher leveldelays that

might be imposed by infrequentevents such as LT pinging or the view flush.Our figures

were derivedon a pairof SUN 3/60'sdoing continuous nullRPC's from one to the other.

The RPC request was sent in a CBCAST; the resultreturned in a CBCAST reply

packet. A new lightweighttask was created at the receiverto fieldeach RPC request.

An Islsmessage isfairlycomplex and allowsscatter/gatherand axbritraryuser-de_C_ued

and system-checked types. Since no attempt has been made to optimize message data

structuresfor the simple case of a nullP.PC, thisaccounts fora a largepart of the time

spent in the messaging/task layerof the system_

The main conclusionfrom thesemeasurements isthatthe CBCAST algorithms we derive

in thispaper are quite inexpensive.Most of the time that a message spends in transitis

spent in the lower layersof the system. Clearly,the Costof UNIX messaging isbeyond

our control,but a great deal can be said about multicasttransport.
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Figure 4: Basic protocol overhead

6.4 Multicast transport protocol selection

The basic Islsmulticasttransportprotocolis designed around a point-to-pointmodel.

Each processin a group maintains a two-way reliabledata stream with each other process

in the group. Whenever possible,acknowledgement informationispiggybacked on other

packets,such as repliesto an RPC or multicast.These streams are maintained indepen-

dently of each other;for brevity,we omit discussionof such detailsas flow controland

failuredetection.This scheme has severaladvantages;itisrelativelyeasy to understand,

asitisbased on a well-known communication model. Sinceitisbuilton top ofunreliable

datagrams, itcan be easilyimplemented on any network thatprovidesthisservice.Ithas,

however, severaldisadvantages-in particular,itdoes not scalewell.The processingand

network transmissioncostsof communicating with a group riselinearlywith the number

ofprocessorsin the group. In addition,as the number ofprocessesin a group increases,a

processsending to the group may experiencecongestionat the network interfaceas many

acknowledgement or replypacketsarrivemore or lesssimultaneouslyfrom the otherother

processesin the group.

We have thereforeinvestigatedthe designofother multicasttransportprotocols.An ideal

multicasttransportprotocolwould have the followingfeatures:

• It would be independent of network topology, but able to take advantage of features

of particular networks - e.g. a broadcast subnet.

• The cost of sending a message would be independent of the number of recipients of
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that message.

• It would work efficientlyfor both small and largemessages.

• Itwould have low overhead, latencyand high throughput.

Itis alsoimportant to note that frequentlya multicast may give riseto many replies

directed to the originalsender. We callsuch an occurrence a c_ergecast_ This can

lead to congestion at the ori_nal multicastsender,with many of the repliesbeing lost.

To avoid this,a multicast transport protocol should have some sort of _nechanism for

co-ordinatingand reliablydeliveringmulticastreplies.Similarconsiderationsmay apply

to acknowledgements; however acknowledgements need not be as timely as replies- the

multicasttransportprotocolhas more freedom to delay them.

Generally speaking,a reliablemulticasttransportmechanism willbe used in two distinct

modes. In the first,stream mode, one processwillmulticasta largeamount ofdata to the

group beforeanother processwishes to reply.Multicastingiscontinuous.This usage could

arisein,for example, a tradingsystem, where the transportmechanism isbeing used to

disseminate quotes to tradingstations.Another example isa replicatedfilesystem where

a clientworkstationiswritinga fileto.agroup offileservers.In ,pc mode, many processes

multicastreplicatedrpc'sto the group, where each rpc contains relativelylittledata, and

ismuch more likelyto actuallyrequirea reply.Multicastsare not continuous,but bursty.

This could arisein maint_g and querying a distributeddatabase or maint_g the

state of a distributedgame. Note that the applicationusing the multicast transport

protocol can provide hints as to which mode it thinks itis operating in° Intermediate

modes of usage can of course arise;we do not expect them to be common.

Reliablemulticast transport protocolsmay be divided into two classes;those based on

positiveacknowledgements, and those based on negative acknowledgements. Many pre-

vious proposals for reliablemulticasttransport protocols have been based on negative

acknowledgements, including [KTHB89,AHL89,CM84]. (Some of these protocols,in ad-

ditionto prodding reliabletransport,alsoprovide transportorderingprop_-ties.)This is

because the designersof these protocolsbelievedthat a positiveacknowledgement from

each receivingsitewould be expensive.We do not believethat thisisso.

Ifa processgroup islargelycommunicating in r-pcmode, replymessages win be converging

at the sender in any case.These replymessages can carry positiveacknowledgements. In

addition,ifthere are many of thesereply messages, they should be scheduled by some

mechanism to avoid congestion and message lossat the multicastsender. On the other

hand, ifa group islargelycommunicating in streammode, the issueofflowcontrolbecomes

very important. The sender can'tsend data fasterthan the slowestprocessin the group

can receiveit;in order to avoid packet loss, there willbe flow controlpackets coming

back to the sender from each other processin the group. Again, these packets may carry

positiveacknowledgments, and again,they must be scheduledinorder to avoid congestion

problems. The protocolhas more flexibilityin sched-llngthesepackets than in scheduling

replypackets,sincethey do not containdata that needs to be deliveredto the higherlevel.
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There are several possible mechanisms for scheduling packets that are converging on the

same destination. One scheme is for the original sender to schedule the packets; it will

decide how many concurrent acknowledgments or replies it (and the network) can handle.

It then schedules each group of acknowledgements. This scheme involves some extra work

by the sender; it has the advantage that the sender can control the rate at which the

packets come back depending on whether or not his client is waiting for replies.

Other methods involve the receivers co-operating to ensure that they don't send too many

packets to the sender at once. One such method basically involves passing one or several

tokens around the group, with the holder of a token having the right to send reply or

acknowledgement packets to the original sender. If the replies or acknowledgements are

small, they can be put on the token itself, which is returned to the sender when it is full.

The main problem with this scheme is that the acknowledgement or reply may take a long

time to return to the original sender of a message. This can be overcome by using large

window sizes, or by using a large enough number of tokens. Another problem is that the

overhead of receiving a message is higher, because an acknowledgement token must be

received and transmitted also. This can be overcome by having one token acknowledge

several messages, and by piggybacking the acknowledgement token wherever possible. A

third problem is that the loss of one acknowledgement packet may cause a message to be

retransmitted to multiple destinations. We believe that the extra overhead is acceptable,

since packet loss should be rare.

Another receiver-scheduled method for handling acknowledgements or replies is simply

to have each acknowledgement be returned at some random time by the recipients. This

scheme has been extensively analyzed by [Dan89]; the main problem is that in order to

avoid congestion at the original sender, the interval from which the random delays must be

picked is very long. It is also of course possible to combine several of the above schemes;

for example, acknowledgements could be sender-scheduled in small groups; individual

acknowledgements within each group could be further randomly delayed.

We are implementing multicast transport protocols with several of the convergecast-

avoidance scheduling strategies described above, and will experiment with them as al-

ternatives to the basic ISIS multicast transport protocol. Our implementations are based

on the multicast UDP software of [Dee88], which provides a logical unreliable multicast

across internets independently of whether the underlying networks support physical mul-

ticast. Full deta_ of the design and implementation of these protocols will be found

in [Ste90]. We will include performance measurements for the bypass CBCAST and

ABCAST protocols running over these transport protocols in the final version of the

paper.
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7' Related Work

There has been a great deal of work on multicast primitives. CBCAST-like primitives

are described in [BJ8?,PBS89,VRB89,SES89,LL86] As noted earlier, our work is most

closely related to that of Ladkin and Peterson. Both of these efforts stopped at essentially

the point we reached in Section 3 arriving a protocols that would perform well within a

single small group, but subject to severe drawbacks in systems with large numbers of pro-

cesses and of overlapping, dynamically chan_ug process groups. Pragmatic considerations

stemming from our desire to use the protocol in ISIS motivated us to take our protocol

considerably further. We believe the resulting work to be interesting from a theoretical

perspective. Viewed from a practical perspective, a causal multicast protocol that scales

well and imposes little overhead under typical conditions certainly represents a valuable

adv'_lce.

ABCAST-1ike primitives are reported in [CM84,BJ87,GMS89,PGM85]. Our ABCAST

protocol is motivated by the Chang-Maxemchuck solution [CM84], but is simpler and

faster because it can be expressed in terms of a virtually synchronous bypass CBCAST.

In particular, our protocol avoids the potentially lengthy delays required by the Chang-

Maxemchuck approach prior to committing a message delivery ordering. We believe this

argues strongly for a separation of concerns in particular, a decoupling process group

management from the communication primitive itself.

We note that of the many protocols described in the literature, very few have been imple-

mented, and many have potentially unbounded overhead or postulate knowledge about

the system communication structure that might be complex to deduce. This makes direct

performance comparisons difficult, since many published protocols give performance esti-

mates based on simulations or measure dedicated implementations on bare hardware. We

are contident that the Isis bypass communication suite gives performance fully competi-

tive with any alternative. The ability to extend the transport layer will enable the system

to remain competitive even in settings with novel architectures or special communication

hardware.

The ability to run the bypass protocols over new transport protocols raises questions for

future investigation. For example, one zaight run bypass CBCAST over a transport

layer with known realtime properties. Depending on the nature of these properties, such

a composed protocol could satls_ both sets of properties simultaneously, or could favor

one over the other. For example, the delay of gushing channels suggests that realtime

and virtual synchrony properties are fundamentally incompatible, but this still leaves

open the possibility of supporting a choice between weakening the realtime guarantees

to ensure that the system will be virtually synchronous and weakening virtual synchrony

to ensure that realtime deadlines are always respected. For many applications, such a

choice could lead to an extremely effective, tuned solution. Pursuing this idea, we see

the Isis system gradually evolving into a more modular structure composed of separable

facilities for group view management, enforcing causality, transporting data, and so forth.
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For a particularsetting,one would selectjust those facilitiesactuallyneeded. Such a

compositionalprogramming stylehas been advocated by others,notably Larry Peterson

in his researchon the Psync system.

8 Conclusions

We have presenteda new scheme, the bypassprotocol,for efficientlyimplementing a re-

liable,causallyordered multicastprimitive.Intended foruse in the Isxstoolkit,itoffers

a way to bypass the most costlyaspectsof Islswhile benefitingfrom virtualsynchrony.

The bypass protocolisinexpensive,yieldshigh performance, and scaleswell. Measured

speedups of more than an order of magnitude were obtained when the protocolwas im-

plemented within Isxs. Our conclusionis that systems such as Islscan achieve perfor-

mance competitivewith the best existingmulticastfacilities- a findingcontradictingthe

widespread concern thatfault-tolerancemay be unacceptably costly.
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